52 research outputs found

    Loss of AQP3 protein expression is associated with worse progression-free and cancer-specific survival in patients with muscle-invasive bladder cancer

    Get PDF
    Purpose Urothelial carcinoma has recently been shown to express several aquaporins (AQP), with AQP3 being of particular interest as its expression is reduced or lost in tumours of higher grade and stage. Loss of AQP3 expression was associated with worse progression-free survival (PFS) in patients with pT1 bladder cancer. The objective of this study was to investigate the prognostic value of AQP3 expression in patients with muscle-invasive bladder carcinoma (MIBC). Methods Retrospective single-centre analysis of the oncological outcome of patients following radical cystectomy (Cx) due to MIBC. Immunohistochemistry was used to assess AQP3 protein expression in 100 Cx specimens. Expression levels of AQP3 were related to clinicopathological variables. The impact of biomarker expression on progression-free, cancer-specific and overall survival was determined by multivariate Cox regression analysis (MVA). Results High expression of AQP3 by the tumour was associated with a statistically significantly improved PFS (75 vs. 19 %, p = 0.043) and CSS (75 vs. 18 %, p = 0.030) and, alongside lymph node involvement, was an independent predictor of PFS (HR 2.871, CI 1.066–7.733, p = 0.037), CSS (HR 3.325, CI 1.204–8.774, p = 0.019) and OS (HR 2.001, CI 1.014–3.947) in MVA. Conclusions Although the results of the study would be strengthened by a larger, more appropriately powered, prospective, multi-institutional study, our findings strongly suggest that AQP3 expression status may represent an independent predictor of PFS and CSS in MIBC and may help select patients in need for (neo-)adjuvant chemotherapy

    Real-time PCR probe optimization using design of experiments approach

    Get PDF
    Primer and probe sequence designs are among the most critical input factors in real-time polymerase chain reaction (PCR) assay optimization. In this study, we present the use of statistical design of experiments (DOE) approach as a general guideline for probe optimization and more specifically focus on design optimization of label-free hydrolysis probes that are designated as mediator probes (MPs), which are used in reverse transcription MP PCR (RT-MP PCR). The effect of three input factors on assay performance was investigated: distance between primer and mediator probe cleavage site; dimer stability of MP and target sequence (influenza B virus); and dimer stability of the mediator and universal reporter (UR). The results indicated that the latter dimer stability had the greatest influence on assay performance, with RT-MP PCR efficiency increased by up to 10% with changes to this input factor. With an optimal design configuration, a detection limit of 3–14 target copies/10 μl reaction could be achieved. This improved detection limit was confirmed for another UR design and for a second target sequence, human metapneumovirus, with 7–11 copies/10 μl reaction detected in an optimum case. The DOE approach for improving oligonucleotide designs for real-time PCR not only produces excellent results but may also reduce the number of experiments that need to be performed, thus reducing costs and experimental times

    Structural analysis of the adenovirus type 5 E1B 55-kilodalton-E4orf6 protein complex.

    No full text
    The adenovirus type 5 (Ad5) early 1B (E1B) 55-kDa (E1B-55kDa)-E4orf6 protein complex has been implicated in the selective modulation of nucleocytoplasmic mRNA transport at late times after infection. Using a combined immunoprecipitation-immunoblotting assay, we mapped the domains in E1B-55kDa required for the interaction with the E4orf6 protein in lytically infected A549 cells. Several domains in the 496-residue 55-kDa polypeptide contributed to a stable association with the E4orf6 protein in E1B mutant virus-infected cells. Linker insertion mutations at amino acids 180 and 224 caused reduced binding of the E4orf6 protein, whereas linker insertion mutations at amino acid 143 and in the central domain of E1B-55kDa eliminated the binding of the E4orf6 protein. Earlier work showing that the central domain of E1B-55kDa is required for binding to p53 and the recent observation that the E4orf6 protein also interacts with the tumor suppressor protein led us to suspect that p53 might play a role in the E1B-E4 protein interaction. However, coimmunoprecipitation assays with extracts prepared from infected p53-negative H1299 cells established that p53 is not needed for the E1B-E4 protein interaction in adenovirus-infected cells. Using two different protein-protein interaction assays, we also mapped the region in the E4orf6 protein required for E1B-55kDa interaction to the amino-terminal 55 amino acid residues. Interestingly, both binding assays established that the same region in the E4orf6/7 protein can potentially interact with E1B-55kDa. Our results demonstrate that two distinct segments in the 55-kDa protein encoding the transformation and late lytic functions independently interact with p53 and the E4orf6 protein in vivo and provide further insight by which the multifunctional 55-kDa EIB protein can exert its multiple activities in lytically infected cells and in adenovirus transformation

    The adenovirus E4orf6 protein can promote E1A/E1B-induced focus formation by interfering with p53 tumor suppressor function

    No full text
    We have recently shown that the adenovirus type 5 E4orf6 protein interacts with the cellular tumor suppressor protein p53 and blocks p53 transcriptional functions. Here we report that the E4orf6 protein can promote focus formation of primary rodent epithelial cells in cooperation with adenovirus E1A and E1A plus E1B proteins. The E4orf6 protein can also inhibit p53-mediated suppression of E1A plus E1B-19kDa-induced focus formation. Mutant analysis of the E4orf6 protein demonstrates that these activities correlate with the ability of the adenovirus protein to relieve transcriptional repression mediated by the carboxyl-terminal region of p53 in transient transfection assays. We further demonstrate that expression of wild-type E4orf6 correlates with a dramatic reduction of p53 steady-state levels in transformed rat cells. Our data demonstrate that adenovirus type 5 encodes two different proteins, E1B-55kDa and E4orf6, that bind to p53 and contribute to transformation by modulating p53 transcriptional functions

    A highly efficient buckypaper-based electrode material for mediatorless laccase-catalyzed dioxygen reduction

    No full text
    a b s t r a c t The redox enzyme laccase from Trametes versicolor efficiently catalyzes the oxygen reduction reaction (ORR) in mediatorless biofuel cell cathodes when adsorbed onto multi-walled carbon nanotubes (MWCNTs). In this work we demonstrate that the fabrication of MWCNTs in form of buckypaper (BP) results in an excellent electrode material for laccase-catalyzed cathodes. BPs are mechanically stable, self-entangling mats with high dispersion of MWCNTs resulting in easy to handle homogeneous layers with highly mesoporous structures and excellent electrical conductivities. All biocathodes have been electrochemically investigated in oxygen-saturated buffer at pH 5 by galvanostatic polarization and potentiodynamic linear sweep voltammetry. Both methods confirm an efficient direct interaction of laccase with BP with a high open circuit potential of 0.882 V vs. normal hydrogen electrode (NHE). The high oxygen reduction performance leads to high current densities of 422 ± 71 A cm −2 at a typical cathode potential of 0.744 V vs. NHE. When the current density is normalized to the mass of the electrode material (mass activity), the BPbased film electrodes exhibit a 68-fold higher current density at 0.744 V vs. NHE than electrodes fabricated from the same MWCNTs in a non-dispersed agglomerated form as packed electrodes. This clearly shows that MWCNTs can act more efficiently as cathode when prepared in form of BP. This can be attributed to reduced diffusional mass transfer limitations and enhanced electrical conductivity. BP is thus a very promising material for the construction of mediatorless laccase cathodes for ORR in biofuel cells. In addition we demonstrated that these electrodes exhibit a high tolerance towards glucose, the most common bioanode fuel

    Overcoming Bottlenecks of Enzymatic Biofuel Cell Cathodes: Crude Fungal Culture Supernatant Can Help to Extend Lifetime and Reduce Cost

    No full text
    Enzymatic biofuel cells (BFCs) show great potential for the direct conversion of biochemically stored energy from renewable biomass resources into electricity. However, enzyme purification is time-consuming and expensive. Furthermore, the long-term use of enzymatic BFCs is hindered by enzyme degradation, which limits their lifetime to only a few weeks. We show, for the first time, that crude culture supernatant from enzyme-secreting micro-organisms (Trametes versicolor) can be used without further treatment to supply the enzyme laccase to the cathode of a mediatorless BFC. Polarization curves show that there is no significant difference in the cathode performance when using crude supernatant that contains laccase compared to purified laccase in culture medium or buffer solution. Furthermore, we demonstrate that the oxygen reduction activity of this enzymatic cathode can be sustained over a period of at least 120 days by periodic resupply of crude culture supernatant. This is more than five times longer than control cathodes without the resupply of culture supernatant. During the operation period of 120 days, no progressive loss of potential is observed, which suggests that significantly longer lifetimes than shown in this work may be possible. Our results demonstrate the possibility to establish simple, cost efficient, and mediatorless enzymatic BFC cathodes that do not require expensive enzyme purification procedures. Furthermore, they show the feasibility of an enzymatic BFC with an extended lifetime, in which self-replicating microorganisms provide the electrode with catalytically active enzymes in a continuous or periodic manner

    Enzymatic Fuel Cells Solely Supplied with Unpurified Cellbiose Dehydrogenase and Laccase in Microorganism's Culture Supernatants

    No full text
    Enzymatic electrodes have great potential for catalysing the direct conversion of chemical compounds into electricity with the use of redox enzymes. However, expensive and time-consuming enzyme purification and the frequent need to add mediators are considered as drawbacks of enzymatic electrodes. We report a biofuel cell at pH 5, supplied with the unpurified enzymes laccase and cellobiose dehydrogenase (CDH) in crude culture supernatant, without the further addition of mediators. A maximum power output of 6.2±1.2 μW cm−2 was achieved by using supernatants containing laccase from Trametes versicolor (2.84 UmL−1) and CDH (0.90 UmL−1) from a recombinant yeast Yarrowia lipolytica YPC4. In comparison, the supply of purified enzymes (laccase: 2.40 UmL−1, CDH: 0.15 UmL−1) in a buffer solution yielded only about a twofold higher power density. Our results demonstrate the feasibility of using unpurified laccase and CDH in an enzymatic biofuel cell, which can simplify its construction and operation
    • …
    corecore